Nanoparticle Superlattices: The Roles of Soft Ligands

نویسندگان

  • Kae Jye Si
  • Yi Chen
  • Qianqian Shi
  • Wenlong Cheng
چکیده

Nanoparticle superlattices are periodic arrays of nanoscale inorganic building blocks including metal nanoparticles, quantum dots and magnetic nanoparticles. Such assemblies can exhibit exciting new collective properties different from those of individual nanoparticle or corresponding bulk materials. However, fabrication of nanoparticle superlattices is nontrivial because nanoparticles are notoriously difficult to manipulate due to complex nanoscale forces among them. An effective way to manipulate these nanoscale forces is to use soft ligands, which can prevent nanoparticles from disordered aggregation, fine-tune the interparticle potential as well as program lattice structures and interparticle distances - the two key parameters governing superlattice properties. This article aims to review the up-to-date advances of superlattices from the viewpoint of soft ligands. We first describe the theories and design principles of soft-ligand-based approach and then thoroughly cover experimental techniques developed from soft ligands such as molecules, polymer and DNA. Finally, we discuss the remaining challenges and future perspectives in nanoparticle superlattices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deviatoric stress-driven fusion of nanoparticle superlattices.

We model the mechanical response of alkanethiol-passivated gold nanoparticle superlattice (supercrystal) at ambient and elevated pressures using large-scale molecular dynamics simulation. Because of the important roles of soft organic ligands in mechanical response, the supercrystals exhibit entropic viscoelasticity during compression at ambient pressure. Applying a hydrostatic pressure of seve...

متن کامل

Hydrogen-bonded structure and mechanical chiral response of a silver nanoparticle superlattice.

Self-assembled nanoparticle superlattices-materials made of inorganic cores capped by organic ligands, of varied structures, and held together by diverse binding motifs-exhibit size-dependent properties as well as tunable collective behaviour arising from couplings between their nanoscale constituents. Here, we report the single-crystal X-ray structure of a superlattice made in the high-yield s...

متن کامل

Two-dimensional gold trisoctahedron nanoparticle superlattice sheets: self-assembly, characterization and immunosensing applications.

Nanoparticles were called "artificial atoms" about two decades ago due to their ability to organize into regular lattices or supracrystals. Their self-assembly into free-standing, two-dimensional (2D) nanoparticle arrays enables the generation of 2D metamaterials for novel applications in sensing, nanophotonics and energy fields. However, their controlled fabrication is nontrivial due to the co...

متن کامل

Binary nanoparticle superlattices of soft-particle systems.

The solid-phase diagram of binary systems consisting of particles of diameter σA = σ and σB = γσ (γ ≤ 1) interacting with an inverse p = 12 power law is investigated as a paradigm of a soft potential. In addition to the diameter ratio γ that characterizes hard-sphere models, the phase diagram is a function of an additional parameter that controls the relative interaction strength between the di...

متن کامل

Dipole-dipole interactions in nanoparticle superlattices.

Nanoparticles often self-assemble into hexagonal-close-packed (hcp) structures although it is predicted to be less stable than face-centered-cubic (fcc) packing in hard-sphere models. In addition to close-packed fcc and hcp superlattices, we observe formation of nonclose-packed simple-hexagonal (sh) superlattices of nearly spherical PbS, PbSe, and gamma-Fe2O3 nanocrystals. This surprisingly ric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2018